Principles and Protocols Neuro MRI David Mikulis, MD The Toronto Western Hospital University of Toronto Neuro Protocols

Objective

 Understand how the array of available MR "tools" is organized into protocols for imaging disorders of the CNS.

Basic Principles

- Multiple planes
 - Sagittal
 - Axial
- MR information
 - T1
 - -T2
- Adequate for majority of patients and diseases

MR Improvements

- New or modified sequences to better visualize or detect pathology
- Function/physiology
- · Image faster

MRI Innovations

- EPI
 - DWI
 - Perfusion
 - fMRI
- Fast spin echo
 - Speed up T2
- **MRS**
- Parallel imaging
 - Speed

Parallel Imaging

- Hardware
 - Generate images using signal acquired simultaneously from multiple surface coils
- Software
 - Use information in the spatial sensitivity profiles of multiple receive coil elements to "unfold" image data
 - ASSET, SENSE, iPAT

ASSET Advantages

- · Decreased scan time
- Increased resolution for same scan time
- "Cleaner" images
 - Sampling fewer echoes to generate image

 - Decreased image blurring
 Less T2 decay across sampling of k-space (fewer echoes needed)
 Sharper FSE images
 Decreased image distortion at skull base on EPI
 - - Decreased phase accumulation from off resonant spins

 - Decreased geometric distortion in areas where magnetic field is inhomogeneous (skull base)

 Better visualization of temporal lobes and posterior fossa on diffusion imaging

ASSET Disadvantages • Increased noise

- Calibration image
- **Artifacts**
 - uncorrected aliasing

R = scan time reduction factorg = geometric factor

11 sec scan

Disease Specific Protocols • Demyelination • Tumor • Epilepsy • Vessels - Arteries (arch to COW) - Aneurysm - Sinovenous • Infarct

Pitfalls: Protocols

- FOV
- FLAIR inversion time
- Sequence modification "on the fly"
- Gd bolus vs non-contrast TOF MRV
- Long ETL
- DWI/ADC T2 shine through

Spine • Sagittal T1 and T2 • Axial - Foraminal visualization - Cord/CSF/disc discrimination • Gd++ - Cord lesions - Scar vs disc

Summary

- Each imaging protocol should be the right mix of speed, resolution, and image quality.
- Since each user has specific needs, preferences, and types of pathology, it is difficult to recommend a standard set of protocols.
- A solution that has worked effectively at our institution is the establishment
 of a monthly protocol meeting composed of Rad staff, MRI techs, Vendor
 rep, Physicist where modified and new protocols are discussed,
 implemented, and then reviewed at the next meeting.
- As changes in hardware and pulse sequence technology evolve, protocol
 modifications can be updated and made quickly in order to maintain the
 state-of-the-art and maximize the return on capital investment.